<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html;
      charset=windows-1252">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hi Philip,<br>
    <br>
    Thanks for digging deeper into this.<br>
    <br>
    <div class="moz-cite-prefix">On 6/26/19 7:58 PM, Philip Köck wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:HE1PR0802MB258608708FF7E2E5CA51605383E20@HE1PR0802MB2586.eurprd08.prod.outlook.com">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
      <div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;"
        dir="ltr">
        <p style="margin-top:0;margin-bottom:0">The statement in Wanner
          et al. 2006 is very strange in my opinion.</p>
        <p style="margin-top:0;margin-bottom:0">Shouldn't
          "perpendicular" be replaced by "parallel"?</p>
      </div>
    </blockquote>
    I also thought the same when I read this statement the first time.
    But now, my understanding is that the statement was meant to be this
    way, please pay attention to the second part of this statement:<br>
    <br>
    "Although only dipole moments with a component perpendicular to the
    electron beam would contribute to a phase shift the irregular and
    corrugated a-C surface will provide attachment sites for H2O
    molecules to fulfill this condition."<br>
    <br>
    Adsorbed H2O dipoles are oriented perpendicular to the surface. If
    the surface is flat and perpendicular to the beam, the dipoles will
    be parallel to the beam. However, an "irregular and corrugated a-C
    surface" will cause some H2O dipoles to be oriented at an angle (or
    even perpendicular) to the beam, thus providing the dipole component
    perpendicular to the beam. Therefore, if an "irregular and
    corrugated a-C surface" is needed to "fulfill this condition", the
    condition seem to be that dipoles are perpendicular to the beam, as
    stated.<br>
    <blockquote type="cite"
cite="mid:HE1PR0802MB258608708FF7E2E5CA51605383E20@HE1PR0802MB2586.eurprd08.prod.outlook.com">
      <div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;"
        dir="ltr">
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">I don't see how the
          potential can be proportional to the distance between the
          dipole layers. If we think of a slab of neutral matter (as a
          thought experiment), which is covered first by a layer of
          positive charges and then an equal amount of negative charges
          on top of that, the following should happen: The negative
          charge curves the potential upwards and the potential
          increases, then the positive charge curves the potential down
          again by an equal amount. The total effect is that the
          potential is constant inside the slab and independent of the
          slab's thickness and therefore the phase shift is proportional
          to the thickness.<br>
          Maybe you meant that the potential is roughly proportional to
          the distance between the negative and positive layer (or more
          generally the dipole moment).</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">I can imagine a constant
          phase shift coming from multiple layers of charge, at least 3,
          that are balanced. A bit like - + + -, for example. That could
          lead to a potential that's confined to the surface and a phase
          shift contribution that's independent of the thickness of the
          solid.</p>
      </div>
    </blockquote>
    Let me try to expand on your model. Adsorbed H2O forms dipoles on
    the surface, with positive charge towards the vacuum and the
    negative towards the material. A potential arising from one dipole
    (having electric dipole moment p, vector) that an electron at a
    distance (vector) r sees is proportional to:<br>
    <br>
        scalar_product(r, p) / magnitude(r)^3 <br>
    <br>
    So you're right that it is proportional to the distance between the
    positive and the negative charge (contained in p), but that's not
    all. H2O dipoles form on both sides of the material and they're
    oriented in the opposite direction. The contribution to the
    potential from the "other side dipol" has the same form, but r needs
    to be replaced by r+d, where (vector) d is the thickness of the
    material. Adding the two terms (with opposite signs because of the
    opposite orientation), when (magnitudes) r>>d leaves in the
    first approximation a term proportional to d. That's the reason for
    my proportionality statement. <br>
    <br>
    In any case, we agree that it is clear why the phase should be
    proportional to the thickness, at least for flat surfaces. The
    strange thing is the thickness-independent part of the phase change.
    Perhaps I'm wrong, but I don't see how multiple flat dipole layers
    could produce this effect. That's why I'm thinking that dipoles
    having components perpendicular to the beam, or some lateral
    rearrangement of electrons in the material are needed (arising from
    rough surfaces or perhaps Volta phase plate), even though I don't
    understand the mechanism.<br>
    <br>
    Best,<br>
    Vladan<br>
    <br>
    <blockquote type="cite"
cite="mid:HE1PR0802MB258608708FF7E2E5CA51605383E20@HE1PR0802MB2586.eurprd08.prod.outlook.com">
      <div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;"
        dir="ltr">
        <p style="margin-top:0;margin-bottom:0">
        </p>
        <p style="margin-top:0;margin-bottom:0">All the best,</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">Philip</p>
      </div>
      <hr style="display:inline-block;width:98%" tabindex="-1">
      <div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt"
          face="Calibri, sans-serif" color="#000000"><b>From:</b> 3dem
          <a class="moz-txt-link-rfc2396E" href="mailto:3dem-bounces@ncmir.ucsd.edu"><3dem-bounces@ncmir.ucsd.edu></a> on behalf of Vladan Lucic
          <a class="moz-txt-link-rfc2396E" href="mailto:vladan@biochem.mpg.de"><vladan@biochem.mpg.de></a><br>
          <b>Sent:</b> Wednesday, 26 June 2019 17:57:58<br>
          <b>To:</b> <a class="moz-txt-link-abbreviated" href="mailto:3dem@ncmir.ucsd.edu">3dem@ncmir.ucsd.edu</a><br>
          <b>Subject:</b> Re: [3dem] (mean Inner potential) Re: 3dem
          Digest, Vol 142, Issue 38</font>
        <div> </div>
      </div>
      <div style="background-color:#FFFFFF">I agree that classically,
        the potential generated by two surface layers of dipoles
        oriented perpendicular to the surface is in the first
        approximation directly proportional to the distance between the
        layers, that is to the thickness, which argues against the
        thickness-independent phase shift. Perhaps that is the reason
        for Wanner et al 2006 (the paper recommended by Ben) to propose
        that dipoles perpendicular to the beam should be considered:<br>
        <br>
        "Although only dipole moments with a component perpendicular to
        the electron beam would contribute to a phase shift the
        irregular and corrugated a-C surface will provide attachment
        sites for H<sub>2</sub>O molecules to fulfill this condition."<br>
        <br>
        Interestingly, Hettler et al 2018, Charging of carbon thin films
        in scanning and phase-plate transmission electron microscopy (
        <a class="x_moz-txt-link-freetext"
          href="https://doi.org/10.1016/j.ultramic.2017.09.009"
          moz-do-not-send="true">
          https://doi.org/10.1016/j.ultramic.2017.09.009</a> ) argue
        that the high surface roughness of the Volta phase plate is
        needed to generate the phase shift (at a high temperature).
        Furthermore, in their picture, surface dipoles are absent from
        the region of the direct beam, which causes lateral
        (perpendicular to the beam) redistribution of electrons. Both of
        these could provide the "perpendicular dipoles" proposed by
        Wanner et al 2006.<br>
        <br>
        Vladan<br>
        <br>
        <div class="x_moz-cite-prefix">On 6/18/19 9:26 AM, Philip Köck
          wrote:<br>
        </div>
        <blockquote type="cite">
          <style type="text/css" style="display:none">
<!--
p
        {margin-top:0;
        margin-bottom:0}
-->
</style>
          <div id="x_divtagdefaultwrapper" dir="ltr"
            style="font-size:12pt; color:#000000;
            font-family:Calibri,Helvetica,sans-serif">
            <p style="margin-top:0; margin-bottom:0">Thanks for the
              reference.</p>
            <p style="margin-top:0; margin-bottom:0"><br>
            </p>
            <p style="margin-top:0; margin-bottom:0">I can't make sense
              of a thickness-independent contribution to the phase shift
              either. The way I see it even a surface layer of dipoles
              would lead to a constant MIP and a phase shift
              proportional to the thickness.</p>
            <p style="margin-top:0; margin-bottom:0">One can think of a
              simple model: A slab of completely neutral material (made
              of neutrons) covered in a layer of positive charge and
              outside that a layer of negative charge that balances the
              positive charge. The potential inside this slab will be
              constant and independent of the thickness of the slab.</p>
            <p style="margin-top:0; margin-bottom:0"><br>
            </p>
            <p style="margin-top:0; margin-bottom:0">I wonder if we can
              get a comment from someone who knows more.</p>
            <p style="margin-top:0; margin-bottom:0"><br>
            </p>
            <p style="margin-top:0; margin-bottom:0">All the best,</p>
            <p style="margin-top:0; margin-bottom:0"><br>
            </p>
            <p style="margin-top:0; margin-bottom:0">Philip</p>
          </div>
          <hr tabindex="-1" style="display:inline-block; width:98%">
          <div id="x_divRplyFwdMsg" dir="ltr"><font
              style="font-size:11pt" face="Calibri, sans-serif"
              color="#000000"><b>From:</b> 3dem
              <a class="x_moz-txt-link-rfc2396E"
                href="mailto:3dem-bounces@ncmir.ucsd.edu"
                moz-do-not-send="true"><3dem-bounces@ncmir.ucsd.edu></a>
              on behalf of Benjamin Himes
              <a class="x_moz-txt-link-rfc2396E"
                href="mailto:himes.benjamin@gmail.com"
                moz-do-not-send="true"><himes.benjamin@gmail.com></a><br>
              <b>Sent:</b> Monday, 17 June 2019 20:45:48<br>
              <b>To:</b> <a class="x_moz-txt-link-abbreviated"
                href="mailto:3dem@ncmir.ucsd.edu" moz-do-not-send="true">
                3dem@ncmir.ucsd.edu</a><br>
              <b>Subject:</b> [3dem] (mean Inner potential) Re: 3dem
              Digest, Vol 142, Issue 38</font>
            <div> </div>
          </div>
          <div>
            <div dir="ltr">
              <div dir="ltr">
                <div class="x_x_gmail_default" style="font-size:small">Hi
                  Philip,</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small">The
                  mean inner potential (MIP) refers to a total
                  "interaction" potential that is considered a material
                  property. It consists of all the sources contributing
                  to the potential well seen by an imaging electron,
                  including those you suggest (nuclear and electronic
                  contributions.)</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small">Yes,
                  physical changes to the surface via adsorbed matter
                  will directly affect the MIP. I believe the working
                  hypothesis for the source of the "Volta" potential is
                  through heat/exposure related modification of surface
                  adsorbates.</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small">It
                  is also interesting to note that in addition to the
                  electronic character of the object, the surface
                  contributions of adsorbates and heating, there is
                  another thickness independent phase shift (at least
                  for carbon) the source of which I am not clear on.
                  Happy to hear an explanation from anyone in the know :
                  )</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small">Please
                  have a look at this paper where all of the non-Volta
                  contributions are discussed and also measured.</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small"><b>"Electron
                    holography of thin amorphous carbon films:
                    Measurement of the mean inner potential and a
                    thickness-independent phase shift"</b></div>
                <div class="x_x_gmail_default" style="font-size:small"><b><br>
                  </b></div>
                <div class="x_x_gmail_default" style="font-size:small"><b>doi:
                    j.ultramic.2005.10.004</b></div>
                <div class="x_x_gmail_default" style="font-size:small"><b><br>
                  </b></div>
                <div class="x_x_gmail_default" style="font-size:small">HTH</div>
                <div class="x_x_gmail_default" style="font-size:small"><br>
                </div>
                <div class="x_x_gmail_default" style="font-size:small">Ben</div>
                <div class="x_x_gmail_default" style="font-size:small"><br
                    clear="all">
                </div>
                <div>
                  <div dir="ltr" class="x_x_gmail_signature">
                    <div dir="ltr">
                      <div>
                        <div dir="ltr">
                          <div>
                            <div dir="ltr">
                              <div>
                                <div dir="ltr">
                                  <div dir="ltr">
                                    <div dir="ltr">------------------------<br>
                                      <font size="2" face="Tahoma"
                                        color="black"><span dir="ltr"
                                          style="font-size:10pt"><font
                                            size="1"><span
                                              style="font-size:13px"><font
                                                face="Arial">Benjamin
                                                Himes</font><font
                                                face="Arial"><br>
                                              </font><font face="Arial"><br>
                                                cryoEM methods
                                                development </font><font
                                                face="Arial"><br>
                                              </font><a
href="https://mail.hhmi.org/owa/redir.aspx?C=SbsCefkcbOt75jDyr05lpd3OifVN_utmfvnhZrtXS7Bl2i2eOXXVCA..&URL=http%3a%2f%2fgrigoriefflab.janelia.org%2f"
                                                target="_blank"
                                                moz-do-not-send="true"><font
                                                  face="Arial">Grigorieff
                                                  lab</font></a><font
                                                face="Arial">, HHMI
                                                Janelia Research Campus</font><font
                                                face="Arial"><br>
                                              </font><font face="Arial"><br>
                                                cryoSTAC development @ </font><a
href="https://mail.hhmi.org/owa/redir.aspx?C=8yDzXj54yTidMevTB7q5m3liEVwqAZ9LxuXQ4iYOVvtl2i2eOXXVCA..&URL=https%3a%2f%2fgithub.com%2fbHimes%2femClarity%2fwiki"
                                                target="_blank"
                                                moz-do-not-send="true"><font
                                                  face="Arial">emClarity</font></a><font
                                                face="Arial"><br>
                                                <br>
-------------------------</font></span></font></span></font></div>
                                  </div>
                                </div>
                              </div>
                            </div>
                          </div>
                        </div>
                      </div>
                    </div>
                  </div>
                </div>
                <br>
              </div>
              <br>
              <div class="x_x_gmail_quote">
                <div dir="ltr" class="x_x_gmail_attr">On Mon, Jun 17,
                  2019 at 12:17 PM <<a
                    href="mailto:3dem-request@ncmir.ucsd.edu"
                    moz-do-not-send="true">3dem-request@ncmir.ucsd.edu</a>>
                  wrote:<br>
                </div>
                <blockquote class="x_x_gmail_quote" style="margin:0px
                  0px 0px 0.8ex; border-left:1px solid rgb(204,204,204);
                  padding-left:1ex">
                  Send 3dem mailing list submissions to<br>
                          <a href="mailto:3dem@ncmir.ucsd.edu"
                    target="_blank" moz-do-not-send="true">3dem@ncmir.ucsd.edu</a><br>
                  <br>
                  To subscribe or unsubscribe via the World Wide Web,
                  visit<br>
                          <a
                    href="https://mail.ncmir.ucsd.edu/mailman/listinfo/3dem"
                    rel="noreferrer" target="_blank"
                    moz-do-not-send="true">
                    https://mail.ncmir.ucsd.edu/mailman/listinfo/3dem</a><br>
                  or, via email, send a message with subject or body
                  'help' to<br>
                          <a href="mailto:3dem-request@ncmir.ucsd.edu"
                    target="_blank" moz-do-not-send="true">3dem-request@ncmir.ucsd.edu</a><br>
                  <br>
                  You can reach the person managing the list at<br>
                          <a href="mailto:3dem-owner@ncmir.ucsd.edu"
                    target="_blank" moz-do-not-send="true">3dem-owner@ncmir.ucsd.edu</a><br>
                  <br>
                  When replying, please edit your Subject line so it is
                  more specific<br>
                  than "Re: Contents of 3dem digest..."<br>
                  <br>
                  <br>
                  Today's Topics:<br>
                  <br>
                     1. mean inner potential of a solid (Philip K?ck)<br>
                     2. NYC Computational Cryo-EM Summer Workshop<br>
                        (Cindy Rampersad-Phillips)<br>
                     3. side entry holder for autogrids? (Michael
                  Elbaum)<br>
                     4. Re: side entry holder for autogrids? (Wim Hagen)<br>
                  <br>
                  <br>
----------------------------------------------------------------------<br>
                  <br>
                  Message: 1<br>
                  Date: Mon, 17 Jun 2019 08:27:35 +0000<br>
                  From: Philip K?ck <<a
                    href="mailto:philip.koeck@ki.se" target="_blank"
                    moz-do-not-send="true">philip.koeck@ki.se</a>><br>
                  To: "<a href="mailto:3dem@ncmir.ucsd.edu"
                    target="_blank" moz-do-not-send="true">3dem@ncmir.ucsd.edu</a>"
                  <<a href="mailto:3dem@ncmir.ucsd.edu"
                    target="_blank" moz-do-not-send="true">3dem@ncmir.ucsd.edu</a>>,<br>
                          "<a href="mailto:microscopy@microscopy.com"
                    target="_blank" moz-do-not-send="true">microscopy@microscopy.com</a>"
                  <<a href="mailto:microscopy@microscopy.com"
                    target="_blank" moz-do-not-send="true">microscopy@microscopy.com</a>><br>
                  Subject: [3dem] mean inner potential of a solid<br>
                  Message-ID:<br>
                          <<a
href="mailto:HE1PR0802MB2586733E695E56B20FBCC6D183EB0@HE1PR0802MB2586.eurprd08.prod.outlook.com"
                    target="_blank" moz-do-not-send="true">HE1PR0802MB2586733E695E56B20FBCC6D183EB0@HE1PR0802MB2586.eurprd08.prod.outlook.com</a>><br>
                  <br>
                  Content-Type: text/plain; charset="utf-8"<br>
                  <br>
                  <br>
                   Hi all.<br>
                  <br>
                  I've been wondering what the mean inner electrostatic
                  potential of a solid (for example the 10 V of carbon)
                  is actually due to.<br>
                  Is it purely caused by the distribution of nuclei and
                  electrons in the solid itself or could there be a
                  contribution from adsorbed surface charges?<br>
                  <br>
                  All the best,<br>
                  <br>
                  Philip<br>
                  <br>
                  <br>
                  <br>
                  N?r du skickar e-post till Karolinska Institutet (KI)
                  inneb?r detta att KI kommer att behandla dina
                  personuppgifter. H?r finns information om hur KI
                  behandlar personuppgifter<<a
                    href="https://ki.se/medarbetare/integritetsskyddspolicy"
                    rel="noreferrer" target="_blank"
                    moz-do-not-send="true">https://ki.se/medarbetare/integritetsskyddspolicy</a>>.<br>
                  <br>
                  <br>
                  Sending email to Karolinska Institutet (KI) will
                  result in KI processing your personal data. You can
                  read more about KI?s processing of personal data
                  here<<a
                    href="https://ki.se/en/staff/data-protection-policy"
                    rel="noreferrer" target="_blank"
                    moz-do-not-send="true">https://ki.se/en/staff/data-protection-policy</a>>.<br>
                  <br>
                </blockquote>
              </div>
            </div>
          </div>
        </blockquote>
        <br>
      </div>
    </blockquote>
    <br>
  </body>
</html>