<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html;
      charset=windows-1252">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    I agree that classically, the potential generated by two surface
    layers of dipoles oriented perpendicular to the surface is in the
    first approximation directly proportional to the distance between
    the layers, that is to the thickness, which argues against the
    thickness-independent phase shift. Perhaps that is the reason for
    Wanner et al 2006 (the paper recommended by Ben) to propose that
    dipoles perpendicular to the beam should be considered:<br>
    <br>
    "Although only dipole moments with a component perpendicular to the
    electron beam would contribute to a phase shift the irregular and
    corrugated a-C surface will provide attachment sites for H<sub>2</sub>O
    molecules to fulfill this condition."<br>
    <br>
    Interestingly, Hettler et al 2018, Charging of carbon thin films in
    scanning and phase-plate transmission electron microscopy (
    <a class="moz-txt-link-freetext" href="https://doi.org/10.1016/j.ultramic.2017.09.009">https://doi.org/10.1016/j.ultramic.2017.09.009</a> ) argue that the high
    surface roughness of the Volta phase plate is needed to generate the
    phase shift (at a high temperature). Furthermore, in their picture,
    surface dipoles are absent from the region of the direct beam, which
    causes lateral (perpendicular to the beam) redistribution of
    electrons. Both of these could provide the "perpendicular dipoles"
    proposed by Wanner et al 2006.<br>
    <br>
    Vladan<br>
    <br>
    <div class="moz-cite-prefix">On 6/18/19 9:26 AM, Philip Köck wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:HE1PR0802MB2586E84818C0C3E1E3121BF483EA0@HE1PR0802MB2586.eurprd08.prod.outlook.com">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
      <div id="divtagdefaultwrapper"
style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;"
        dir="ltr">
        <p style="margin-top:0;margin-bottom:0">Thanks for the
          reference.</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">I can't make sense of a
          thickness-independent contribution to the phase shift either.
          The way I see it even a surface layer of dipoles would lead to
          a constant MIP and a phase shift proportional to the
          thickness.</p>
        <p style="margin-top:0;margin-bottom:0">One can think of a
          simple model: A slab of completely neutral material (made of
          neutrons) covered in a layer of positive charge and outside
          that a layer of negative charge that balances the positive
          charge. The potential inside this slab will be constant and
          independent of the thickness of the slab.</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">I wonder if we can get a
          comment from someone who knows more.</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">All the best,</p>
        <p style="margin-top:0;margin-bottom:0"><br>
        </p>
        <p style="margin-top:0;margin-bottom:0">Philip</p>
      </div>
      <hr style="display:inline-block;width:98%" tabindex="-1">
      <div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt"
          face="Calibri, sans-serif" color="#000000"><b>From:</b> 3dem
          <a class="moz-txt-link-rfc2396E" href="mailto:3dem-bounces@ncmir.ucsd.edu"><3dem-bounces@ncmir.ucsd.edu></a> on behalf of Benjamin
          Himes <a class="moz-txt-link-rfc2396E" href="mailto:himes.benjamin@gmail.com"><himes.benjamin@gmail.com></a><br>
          <b>Sent:</b> Monday, 17 June 2019 20:45:48<br>
          <b>To:</b> <a class="moz-txt-link-abbreviated" href="mailto:3dem@ncmir.ucsd.edu">3dem@ncmir.ucsd.edu</a><br>
          <b>Subject:</b> [3dem] (mean Inner potential) Re: 3dem Digest,
          Vol 142, Issue 38</font>
        <div> </div>
      </div>
      <div>
        <div dir="ltr">
          <div dir="ltr">
            <div class="x_gmail_default" style="font-size:small">Hi
              Philip,</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small">The
              mean inner potential (MIP) refers to a total "interaction"
              potential that is considered a material property. It
              consists of all the sources contributing to the potential
              well seen by an imaging electron, including those you
              suggest (nuclear and electronic contributions.)</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small">Yes,
              physical changes to the surface via adsorbed matter will
              directly affect the MIP. I believe the working hypothesis
              for the source of the "Volta" potential is through
              heat/exposure related modification of surface adsorbates.</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small">It is
              also interesting to note that in addition to the
              electronic character of the object, the surface
              contributions of adsorbates and heating, there is another
              thickness independent phase shift (at least for carbon)
              the source of which I am not clear on. Happy to hear an
              explanation from anyone in the know : )</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small">Please
              have a look at this paper where all of the non-Volta
              contributions are discussed and also measured.</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small"><b>"Electron
                holography of thin amorphous carbon films: Measurement
                of the mean inner potential and a thickness-independent
                phase shift"</b></div>
            <div class="x_gmail_default" style="font-size:small"><b><br>
              </b></div>
            <div class="x_gmail_default" style="font-size:small"><b>doi:
                j.ultramic.2005.10.004</b></div>
            <div class="x_gmail_default" style="font-size:small"><b><br>
              </b></div>
            <div class="x_gmail_default" style="font-size:small">HTH</div>
            <div class="x_gmail_default" style="font-size:small"><br>
            </div>
            <div class="x_gmail_default" style="font-size:small">Ben</div>
            <div class="x_gmail_default" style="font-size:small"><br
                clear="all">
            </div>
            <div>
              <div dir="ltr" class="x_gmail_signature">
                <div dir="ltr">
                  <div>
                    <div dir="ltr">
                      <div>
                        <div dir="ltr">
                          <div>
                            <div dir="ltr">
                              <div dir="ltr">
                                <div dir="ltr">------------------------<br>
                                  <font size="2" face="Tahoma"
                                    color="black"><span dir="ltr"
                                      style="font-size:10pt"><font
                                        size="1"><span
                                          style="font-size:13px"><font
                                            face="Arial">Benjamin Himes</font><font
                                            face="Arial"><br>
                                          </font><font face="Arial"><br>
                                            cryoEM methods development </font><font
                                            face="Arial"><br>
                                          </font><a
href="https://mail.hhmi.org/owa/redir.aspx?C=SbsCefkcbOt75jDyr05lpd3OifVN_utmfvnhZrtXS7Bl2i2eOXXVCA..&URL=http%3a%2f%2fgrigoriefflab.janelia.org%2f"
                                            target="_blank"
                                            moz-do-not-send="true"><font
                                              face="Arial">Grigorieff
                                              lab</font></a><font
                                            face="Arial">, HHMI Janelia
                                            Research Campus</font><font
                                            face="Arial"><br>
                                          </font><font face="Arial"><br>
                                            cryoSTAC development @ </font><a
href="https://mail.hhmi.org/owa/redir.aspx?C=8yDzXj54yTidMevTB7q5m3liEVwqAZ9LxuXQ4iYOVvtl2i2eOXXVCA..&URL=https%3a%2f%2fgithub.com%2fbHimes%2femClarity%2fwiki"
                                            target="_blank"
                                            moz-do-not-send="true"><font
                                              face="Arial">emClarity</font></a><font
                                            face="Arial"><br>
                                            <br>
                                            -------------------------</font></span></font></span></font></div>
                              </div>
                            </div>
                          </div>
                        </div>
                      </div>
                    </div>
                  </div>
                </div>
              </div>
            </div>
            <br>
          </div>
          <br>
          <div class="x_gmail_quote">
            <div dir="ltr" class="x_gmail_attr">On Mon, Jun 17, 2019 at
              12:17 PM <<a href="mailto:3dem-request@ncmir.ucsd.edu"
                moz-do-not-send="true">3dem-request@ncmir.ucsd.edu</a>>
              wrote:<br>
            </div>
            <blockquote class="x_gmail_quote" style="margin:0px 0px 0px
              0.8ex; border-left:1px solid rgb(204,204,204);
              padding-left:1ex">
              Send 3dem mailing list submissions to<br>
                      <a href="mailto:3dem@ncmir.ucsd.edu"
                target="_blank" moz-do-not-send="true">3dem@ncmir.ucsd.edu</a><br>
              <br>
              To subscribe or unsubscribe via the World Wide Web, visit<br>
                      <a
                href="https://mail.ncmir.ucsd.edu/mailman/listinfo/3dem"
                rel="noreferrer" target="_blank" moz-do-not-send="true">
                https://mail.ncmir.ucsd.edu/mailman/listinfo/3dem</a><br>
              or, via email, send a message with subject or body 'help'
              to<br>
                      <a href="mailto:3dem-request@ncmir.ucsd.edu"
                target="_blank" moz-do-not-send="true">3dem-request@ncmir.ucsd.edu</a><br>
              <br>
              You can reach the person managing the list at<br>
                      <a href="mailto:3dem-owner@ncmir.ucsd.edu"
                target="_blank" moz-do-not-send="true">3dem-owner@ncmir.ucsd.edu</a><br>
              <br>
              When replying, please edit your Subject line so it is more
              specific<br>
              than "Re: Contents of 3dem digest..."<br>
              <br>
              <br>
              Today's Topics:<br>
              <br>
                 1. mean inner potential of a solid (Philip K?ck)<br>
                 2. NYC Computational Cryo-EM Summer Workshop<br>
                    (Cindy Rampersad-Phillips)<br>
                 3. side entry holder for autogrids? (Michael Elbaum)<br>
                 4. Re: side entry holder for autogrids? (Wim Hagen)<br>
              <br>
              <br>
----------------------------------------------------------------------<br>
              <br>
              Message: 1<br>
              Date: Mon, 17 Jun 2019 08:27:35 +0000<br>
              From: Philip K?ck <<a href="mailto:philip.koeck@ki.se"
                target="_blank" moz-do-not-send="true">philip.koeck@ki.se</a>><br>
              To: "<a href="mailto:3dem@ncmir.ucsd.edu" target="_blank"
                moz-do-not-send="true">3dem@ncmir.ucsd.edu</a>" <<a
                href="mailto:3dem@ncmir.ucsd.edu" target="_blank"
                moz-do-not-send="true">3dem@ncmir.ucsd.edu</a>>,<br>
                      "<a href="mailto:microscopy@microscopy.com"
                target="_blank" moz-do-not-send="true">microscopy@microscopy.com</a>"
              <<a href="mailto:microscopy@microscopy.com"
                target="_blank" moz-do-not-send="true">microscopy@microscopy.com</a>><br>
              Subject: [3dem] mean inner potential of a solid<br>
              Message-ID:<br>
                      <<a
href="mailto:HE1PR0802MB2586733E695E56B20FBCC6D183EB0@HE1PR0802MB2586.eurprd08.prod.outlook.com"
                target="_blank" moz-do-not-send="true">HE1PR0802MB2586733E695E56B20FBCC6D183EB0@HE1PR0802MB2586.eurprd08.prod.outlook.com</a>><br>
              <br>
              Content-Type: text/plain; charset="utf-8"<br>
              <br>
              <br>
               Hi all.<br>
              <br>
              I've been wondering what the mean inner electrostatic
              potential of a solid (for example the 10 V of carbon) is
              actually due to.<br>
              Is it purely caused by the distribution of nuclei and
              electrons in the solid itself or could there be a
              contribution from adsorbed surface charges?<br>
              <br>
              All the best,<br>
              <br>
              Philip<br>
              <br>
              <br>
              <br>
              N?r du skickar e-post till Karolinska Institutet (KI)
              inneb?r detta att KI kommer att behandla dina
              personuppgifter. H?r finns information om hur KI behandlar
              personuppgifter<<a
                href="https://ki.se/medarbetare/integritetsskyddspolicy"
                rel="noreferrer" target="_blank" moz-do-not-send="true">https://ki.se/medarbetare/integritetsskyddspolicy</a>>.<br>
              <br>
              <br>
              Sending email to Karolinska Institutet (KI) will result in
              KI processing your personal data. You can read more about
              KI?s processing of personal data here<<a
                href="https://ki.se/en/staff/data-protection-policy"
                rel="noreferrer" target="_blank" moz-do-not-send="true">https://ki.se/en/staff/data-protection-policy</a>>.<br>
              <br>
            </blockquote>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
  </body>
</html>