
Falcon Hacking
Chen Xu

<xuchen@brandeis.edu>

$BrandeisEM: ~/emdoc/articles-xml/Flacon-Hack/article.xml 1 2016-01-21 11:03:33 xuchen Exp$

In order to get all the raw frames from FEI Falcon II camera, we have to hack the system. At least, this is the
situation up to the time of writing this document. Fortunately, this is a non-destructive hack to FEI camera system,
both hardware and software wise. Therefore, we can do whatever we want to do.

I am trying to record all I have done for this project. This doc is written for myself, in case we have to duplicate the
system at Janelia Farm of HHMI. If you have interests in doing the similar thing to your Falcon camera, you might
also find it is informative and useful. You might not need to ask some very basic and detailed questions to Greg at
MRC. Therefore, it might save some Greg's time and energy.

You can also get pdf version of this document here.

[Split HTML / Single HTML]

Table of Contents
1 All the credit goes to Greg McMullan at MRC
2 The Background
3 Hardware List
4 Setup Capture Computer Workstation
5 Setup FreeNAS Data Tank Computer
6 Final System Setup

1 All the credit goes to Greg McMullan at MRC
I feel extremely lucky for Greg is willing to spend a lot of time to provide instructions, from basic idea to detailed
hardware purchase list and software details at computers setup. I follow almost precisely what he instructed, step by
step.

All the credit goes to Greg McMullan at MRC. He is the one who comes up this hacking and provided all the
information to me.

2 The Background
As a CMOS camera, FEI's Falcon camera runs at speed of 17-18 frames per second(fps). However, FEI software
doesn't not give all the raw frames. For Falcon I, we simply got a single shot image which is an integration of
multiple raw frames. For Falcon II, the Tecnai or Titan software of newer version can maximumly output 7 chunks
of frames. Each chunk can be as small as one raw frame, or as large as a sum of a continuous groups of raw frames.
Any way, we can only get 7 final chunks (or frames) in the end for each exposure. This might be well likely due to
limited computational power of current Windows XP computer that runs the microscope.

There is an 1GbE network connection between Falcon camera controller and Tecnai/Titan computer. The connection
between controller to camera head is a pair of fibril optical cables with LC connectors at both ends. This optical
cable has speed of 10GbE. All the signals - starting and ending for each exposure and image data itself all go
through this pair of fibril optical cables.

The idea is to intercept the signals going through the fibril optical cables and retrieve the image frame information.
This is done by using an optical tap, or called optical splitter. The optical tap is a typical network device to allow
monitoring the network activities. The monitoring port from this optical tap goes to a special optical network card
installed in a powerful Linux computer. Greg managed to modify the network driver, which allows him to retrieve
and restore all the raw frames from an exposure.

As you can see, this hacking project involves both hardware and software.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

1 of 12 10/23/18, 11:27 AM

3 Hardware List
The hardware for this hacking project can be described as three parts: (1) Network Optical Devices, (2) Capture
CentOS Linux Computer and (3) FreeNAS Data Storage Tank Computer.

(1) Network Optical Devices:

1x SFN5122F Solarflare dual-port 10GbE card.

This is the main piece of hardware. This is a dual port card. Two image of this card are shown below.

2x 10GbE 850nm SFP+ transceivers.

This works with the optical card. You need two of these, as each of the dual ports on the SolarFlare card
will need one. Here are a couple of pictures of it.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

2 of 12 10/23/18, 11:27 AM

1x optical tap with LC connectors.

This is the intercepting unit. As suggested by Greg, we got one from BlackBox. Make sure this is 850
nm, multi mode. Here is the images of this. The part number from BlackBox is TS245A.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

3 of 12 10/23/18, 11:27 AM

1x Tap Rackmount Bracket, 19", 1U, from BlackBox. The part Number is TS253.

2x LC 50um 850 nm optical cables.

You can find this kind of optical cable easily. One thing is worth mentioning is that you better off buy
the one with "side release clip". One end from monitor port on optical tap needs to be split into two
single fibrils so they can be plugged into receiving ports on both of the dual ports on SolarFlare card.
With this side release clip, splitting them is much easier. See the second image below.

The cable I bought from www.cxtec.com has description on the part "229548:2M DUPLEX 50/125
MULTIMODE AQUA OM3 LC/LC RISER JUMPER CABLE WITH SIDE RELEASE CLIPS". You
might need to tell them how long you want the cable to be. I bought 2 meters for our setup, you might
need longer.

A couple of images are shown here too.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

4 of 12 10/23/18, 11:27 AM

(2) Capture CentOS Linux Computer

I bought both main computers from iXsystems.com. I have been quite happy with them. One of the reasons I use
them is that I know their FreeNAS software system is very robust, easy to configure, has ZFS - one of the most
advanced modern filesystems and based on rock solid FreeBSD system for which I am a die-hard fan. The computer
case I bought from them for this project is identical to what Gatan uses for their K2 computer.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

5 of 12 10/23/18, 11:27 AM

The main concern is the mount of RAM in the system for this capture computer workstation. We also want to have
fast disk array to we can save large images from memory to disk very quickly. Here is what I have:

Supermicro motherboard X9SRL-F. It has sufficient PCI-E slots: 2 PCI-E 3.0 x8, 2 PCI-E 3.0 x8 (in
x16), 2 PCI-E 3.0 x4 (in x8), 1 PCI-E 2.0 x4 (in x8). This is important since we will need PCI-E 3.0 x8
slots for SolarFlare card, another 10GbE network card for local data swapping out and a SATA-3 Host
Buss Adapter (HBA) card.

Intel Quad Core 3.70Ghz Xeon 10MB cache.

64GB of RAM.

3 500GB SSD disks. I probably should buy 4.

A Chelsio T420-CR 10 Gigabit Dual Port Card with Twinax cable with SPF+ transceiver modules. This
is for quickly swapping out the data saved on SSD to a longer term storage tank.

A LSI adapter (HBA) [HBA-LSI-9207-8I] for 3 SSD drives. There are only two SATA3 ports on
motherboard. SATA2 will slow thing down.

(3) FreeNAS Computer Data Storage Tank

The some motherboard as Capture Linux Computer, the same CPU, also has 64GB RAM.

A Chelsio T420-CR 10 Gigabit Dual Port Card.

8 4TB SATA3 harddrives.

A LSI HBA SATA3 adapter for 8 harddrive disks.

4 Setup Capture Computer Workstation
The computer shipped to me has been installed with CentOS 6.5 as I requested. The OS sits on a 32GB Solid State
Boot Device. Here is the kernel info.

uname -r
 2.6.32-431.el6.x86_64

This a standard release kernel. I did not do any update.

I list here some of the steps I performed to this computer.

Power up. I see it boots up normally and I get a login prompt. There is no graphic interface of X server
installed. So that means I'll have to do every configuration from command line. I feel excited, as it will
test how much I still remember this Linux stuff, I am more a FreeBSD person.

1.

Install SolarFlare card into PCI-E 3 X8 slot. Reboot. After booting up, I see the card from `dmesg`. And
I can see that the Linux RPM driver for this card has also being installed, upon my request to
iXsystems.com.

lsmod | grep sfc
sfc_char 30522 1 onload
sfc_resource 127811 2 onload,sfc_char
sfc_affinity 11108 1 sfc_resource
sfc 390525 3 onload,sfc_resource,sfc_affinity
i2c_algo_bit 5935 1 sfc
mdio 4769 1 sfc
sfc_tune 23485 0
i2c_core 31084 3 sfc,i2c_algo_bit,i2c_i801
ptp 9614 2 sfc,e1000e

You will see less lines here, as I list here is after I installed the final driver. Initial RPM driver gives less
line here.

2.

Install this computer box into existing FEI rack in TF30 room. Luckily, there are still two slots to allow
me to put both new computers in. I should have ordered the side rack mounting brackets. This is a 4U
case, rack mountable. Fortunitely, there are strong supports for them in the rack. They fit in the rack

3.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

6 of 12 10/23/18, 11:27 AM

nicely.

Configure 1 1Gb NIC interface and to include it into our existing network of EM suite 192.168.1.0/24.
There are 3 ethernet ports on motherboard, 2 from Chelsio card and another 2 from SolarFlare card. It
took me some time to figure out which one is which. Once that is known, configuring it becomes easy.

cat /etc/sysconfig/network-scripts/ifcfg-eth2
DEVICE=eth2
HWADDR=0C:C4:7A:00:BD:2E
TYPE=Ethernet
UUID=dc5f71b9-454c-48cc-a00b-7b3c66101bfa
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=none
IPADDR=192.168.1.20
PREFIX=24
GATEWAY=192.168.1.1
DNS1=129.64.99.205
DNS2=129.64.100.205
DEFROUTE=yes
DOMAIN=brandeis.edu

ifup eth2

ifconfig eth2
eth2 Link encap:Ethernet HWaddr 0C:C4:7A:00:BD:2E
 inet addr:192.168.1.20 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::ec4:7aff:fe00:bd2e/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:114424 errors:0 dropped:0 overruns:0 frame:0
 TX packets:26777 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:90517336 (86.3 MiB) TX bytes:3560653 (3.3 MiB)
 Interrupt:18 Memory:fbd00000-fbd20000

4.

Install some packages. Later, we need to compile the SolarFlare driver, the kernel-devel is the most
important one to install.

yum install kernel-devel

And I also installed some packages which are needed for full kernel source installation. Some of them
might not be neccesary, as complation of SolarFlare driver doesn't really need full kernel source. But
there is what I also did:

yum install rpm-build redhat-rpm-config asciidoc hmaccalc perl-ExtUtils-Embed xmlto
yum install audit-libs-devel binutils-devel elfutils-devel elfutils-libelf-devel
yum install newt-devel python-devel zlib-devel

I also install a couple of packages for my own convenience.

yum -y install man wget

I like tmux a lot, so also want it. But it is not yet on CentOS yum system. So I have to install the rpm
package.

rpm -Uvh http://pkgs.repoforge.org/tmux/tmux-1.6-1.el6.rf.x86_64.rpm

5.

Now, download openonload stable driver and see if we can compile it.

wget http://www.openonload.org/download/openonload-201310-u2.tgz
tar xvzf openonload-201310-u2.tgz
cd openonload-201310-u2/scripts
./onload_install

If that is successful without error message, then it is good. We are ready to move to next step. You might
have to install some -libgcc for i686 etc., for 32-bit compatibility. I don't know if it is needed or not, but
I included this anyway.

yum -y install glibc-devel.i686

6.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

7 of 12 10/23/18, 11:27 AM

Install the Rackmount Bracket from BlackBox to the rack.7.

Now install the optical tap to Rackmount Bracket. An image shown its mounting and optical cable
connection to the tap is below.

Now lets connect the optical cables. First disconnect the LC connector of the purple color optical cable
from FEI Falcon Controller box, and connect it to port A on optical tap. Then use one LC optical cable
to connect from Falcon Controller box to port B on the tap. Last, using another LC optical cable, one
end goes to port "monitor" on the tap, other end is split to two single fibrils by take them out from the
side-release clip. These two fibrils go to receiving port on each of the two ports on the SolarFlare card.
The receiving port is the one near "Act" on the card bracket.

As soon as these two fibrils are inserted into receiving ports, the LED on the card light up immediately.

8.

It things are setup correctly, Falcon camera should behave just like it always has been. So take an image
on microscope to verify it.

9.

Now everything looks good, we can bring up the 10GbE Chelsio card ethernet interface. There are two
ports on the card, we only need one. Lets find the card and driver info from `dmesg`.

dmesg | grep eth0
 cxgb4 0000:02:00.4: eth0: Chelsio T420-CR rev 2 10GBASE-R SFP+ RNIC PCIe x8 5 GT/s MSI-X
 cxgb4 0000:02:00.4: eth0: S/N: PT38130118, E/C: 01234567890123

We need to assigned the IP address of this card to a different subnet from 1GbE one. We can give it as
192.168.2.1. After editing the config file, bring it up using "ifup eth0" or reboot.

cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
HWADDR=00:07:43:15:36:90
TYPE=Ethernet
UUID=f781d905-1f06-4cbf-b0f7-7fe9a87dd6f2
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=none
IPADDR=192.168.2.1
PREFIX=24
#GATEWAY=192.168.1.1
#DNS1=129.64.99.205
#DNS2=129.64.100.205
#DEFROUTE=yes
DOMAIN=brandeis.edu

This is to connect to FreeNAS file storage tank directly, not for connecting to internet. Therefore, no
need to define route and DNS etc.. You can see it from "ifconfig eth0" as below:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:07:43:15:36:90
 inet addr:192.168.2.1 Bcast:192.168.2.255 Mask:255.255.255.0
 inet6 addr: fe80::207:43ff:fe15:3690/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:7956918 errors:0 dropped:0 overruns:0 frame:0
 TX packets:43729928 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:3940525722 (3.6 GiB) TX bytes:65301388658 (60.8 GiB)
 Interrupt:32

10.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

8 of 12 10/23/18, 11:27 AM

You can also use "ethtool to see its speed".

ethtool eth0
Settings for eth0:
 Supported ports: [FIBRE]
 Supported link modes: Not reported
 Supported pause frame use: No
 Supports auto-negotiation: No
 Advertised link modes: Not reported
 Advertised pause frame use: No
 Advertised auto-negotiation: No
 Speed: 10000Mb/s
 Duplex: Full
 Port: Direct Attach Copper
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: off
 Supports Wake-on: bg
 Wake-on: d
 Current message level: 0x000000ff (255)
 drv probe link timer ifdown ifup rx_err tx_err
 Link detected: yes

It is the time to prepare the disk array. The three SSD drives arrived to have software RAID partition
created using GPT. This was upon my request as I want to have them configured as RAID0, but the raid
array has not been configured or mounted. We have to do it ourselves.

When I talked to iXsystems.com and told them that I wanted SSD drives to be configured as RAID0,
they told me that RAID0 is not recommended. It is true that RAID0 is less safe for redundancy, but since
the images setting on them are only for short period of time before swapping out the larger data tank, I
still want RAID0. Considering factors of performance, speed and security, I believe RAID0 is a good
choice.

Since I have to do it from command line, I have to install mdadm package first.

yum install mdadm

From dmesg, I know the three devices related to three SSD driver are ada, adb, adc. So I first created a
file /etc/mdadm.conf containing following line:

DEVICE /dev/sd[abc]
ARRAY /dev/md0 devices=/dev/sda,/dev/sdb,/dev/sdc

Prior to the creation or usage of any RAID devices, the /proc/mdstat file shows no active RAID devices:

 Personalities :
 read_ahead not set
 Event: 0
 unused devices: none

Now, using above configuration and command "mdadm" to create raid0 array:

mdadm -C /dev/md0 --level=raid0 --raid-devices=3 /dev/sda /dev/sdb /dev/sdc
 Continue creating array? yes
 mdadm: array /dev/md0 started.

If my SSD has not been prepared with raid partitions, the above command would have done the job.
Since I create the new raid devices on pre-existed raid disks, I found that I have to "assemble" them.

mdadm --assemble /dev/md0 /dev/ada /dev/adb /dev/adc

And I also need to make new filesystem on the new raid0 array:

mkfs -f ext4 /dev/md0

And then I can mount it.

mkdir /mnt/SSD_RAID
mount -t ext4 /dev/md0 /mnt/SSD_RAID

11.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

9 of 12 10/23/18, 11:27 AM

/etc/fstab is needed to update by adding the line, so that the raid array can be mounted when boot.

 /dev/md0 /mnt/SSD_RAID ext4 defaults 1 1

Now we can see the raid status from /proc/mdstat

cat /proc/mdstat
 Personalities : [raid0]
 md0 : active raid0 sdc[2] sda[0] sdb[1]
 1465159680 blocks super 1.2 512k chunks

 unused devices: none

And from command "mdadm --detail /dev/md0":

mdadm --detail /dev/md0
/dev/md0:
 Version : 1.2
 Creation Time : Sun Feb 23 13:07:23 2014
 Raid Level : raid0
 Array Size : 1465159680 (1397.29 GiB 1500.32 GB)
 Raid Devices : 3
 Total Devices : 3
 Persistence : Superblock is persistent

 Update Time : Sun Feb 23 13:07:23 2014
 State : clean
 Active Devices : 3
Working Devices : 3
 Failed Devices : 0
 Spare Devices : 0

 Chunk Size : 512K

 Name : localhost.localdomain:0 (local to host localhost.localdomain)
 UUID : 555833b1:d9b30cd7:f7e1d2b0:933f23e4
 Events : 0

 Number Major Minor RaidDevice State
 0 8 0 0 active sync /dev/sda
 1 8 16 1 active sync /dev/sdb
 2 8 32 2 active sync /dev/sdc

Now mount falcon folder on Tecnai computer so capture program can access to the Falcon Gain
Reference file and Sensor Defection file. First, at Tecnai computer turn on share for the folder C:\tecnai
\data\falcon, and give it share name as Falcon. Then, install CIFS packages on CentOS Linux computer.

yum -y install cifs

And we mount it on:

mkdir /mnt/falcon
mount -t cifs //192.168.1.2/Falcon -o username=emuser,password="password-for-emuser" /mnt/falcon

Here, emuser is a dummy userid existed on Tecnai computer.

We also need to update /etc/fstab to include it

//192.168.1.2/Falcon /mnt/falcon cifs username=emuser,password=passwd-for-emuser 0 0

12.

We need to prepare the memory allocation for capture program. Currently, on our system we have
following three lines in /etc/sysctl.conf.

vm.nr_hugepages = 6144
kernel.shmmax = 38927335424
kernel.shmall = 38927335424

After modifying /etc/sysctl.conf, the computer needs to reboot to take the change into effect.

13.

5 Setup FreeNAS Data Tank Computer

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

10 of 12 10/23/18, 11:27 AM

The computer shipped with FreeNAS 9.2.1 installed. FreeNAS is based on open source FreeBSD system and can be
configured everything from a web browser. It is a polished product. If you know FreeBSD system, then managing
FreeNAS system is very simple. FreeNAS system also have wonderful documentation for you to check.

Connect a monitor and keyboard, power up the computer.1.

After booting finished, select option 1 - configure the network interface. I only configure em0 at this
point. And I give it IPaddress as 192.168.1.21.

2.

After the network interface em0 is configured, I can open a web browser from any computer in the same
LAN and point to http://192.168.1.21 .

3.

As I read from FreeNAS release new, the recent release 9.2.1 has a few bugs related to jail and cifs.
FreeNAS release team recommended to upgrade to a latest release 9.2.1.1. I did that. The upgrading
process via GUI is very simple and quick. Within a few minutes, my system was upgraded to the latest
9.2.1.1.

4.

Configure the other 10GbE network interface cxgb0. I give it IP address 192.168.2.2. After this setup, I
can ping this address from Capture Linux Computer. So I know the 10GbE connection is established
between the two Chelsio cards in two computers.

5.

Configure storage risk array. I have 8 4TB WD disks. I go ahead to configure them at RAIDZ, even the
system says it is not standard and recommend RAIDZ2. Again, because the data on this array is not
critically needed for redundancy and RAIDZ has better speed performance, I still go with RAIDZ. After
it configured, I have ~23TB storage space, available with two network interfaces, 1GbE and 10GbE.
This part of configuration process is so simple that I really love it.

6.

I need to export large data tank disk array to Capture Linux Computer, so the copying data between SSD
and this data storage tank is easy.

Configure NFS service for this RAIDZ array. I export it to the client IP address of 192.168.2.1 which is
the 10GbE Chelsio network interface on Capture Linux Computer. I define -maproot = root as export
option. After saving the settings, the system is ready to be mounted from Capture Linux Computer.

7.

6 Final System Setup
We are at step to put everything together.

Ask Greg for his modified version of openonload driver and install it. Like before, as root, do the
following.

mkdir greg
cd greg
tar xvf modified_oo.tar
cd openonload-201310-u2/scripts
./onload_install

In the case the onload driver has been already installed, one might have to uninstall it first.

onload_uninstall
./onload_install

1.

On Capture CentOS Linux computer, create a user with username as capture. The UID and GID both
equal to 29998. And also make sure the user capture can do "sudo" so it should belong to sudoers.

2.

login to Capture CentOS Linux computer as capture. Ask Greg for his capture program and all the
header files. Place this file capture.tar.bz2 in capture's home directory.

% tar xjvf capture.tar.bz2
% cd CAPTURE
% ls -l
total 12
drwxr-xr-x. 2 capture capture 4096 Feb 25 07:15 lib
drwxr-xr-x. 2 capture capture 4096 Feb 25 13:03 scripts
drwxr-xr-x. 2 capture capture 4096 Feb 25 07:16 src
% cd lib
% make clean && make

3.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

11 of 12 10/23/18, 11:27 AM

% cd ../src
% make clean && make

If things go correctly, you will have a compiled program capture in src directory. You might have to
install packages expat and expat-devel.

Now it is the moment. Make a directory from SSD_RAID and from it run:

% sudo ifconfig eth4 mtu 9000
% sudo ifconfig eth5 mtu 9000
% ~capture/CAPTURE/src/capture

The program will spit out some monitoring info like this:

 20_17_34:Idle :370, 0:796, 72650:: 2100 76 76: Range 10000 0

Pay attention to the value in the place of :796, 72650:. On our system it is :330, 73444:. If you see the
two numbers the other way around, swap the two fibrils to SolarFlare card plug position. We have the
following spit out lines from our system.

 OUTPUT USERID (-u) 29998
 OUTPUT grouid (-g) 29998
 Minimum movie size to be saved (-m) 1.000000 GB
 NOTE: Saving only movies with more than 16 frames
 NY = 4096 row_start 0 row_end 4096 nx 4096 g_lda 4096
 Reading Defect file /mnt/falcon/SensorDefects.xml
 XML start defects
 XML start row
 XML start col
 XML start col
 XML start point
 NUMBER of DEFECTS 4
 TEST g_lda 4096 ny 4096 nx 4096
 0 : ROW defect 446 : 0
 1 : Column defect 1199
 2 : Column defect 1815
 3 : POINT defect 2987 347 2
 RETURNING 4
 Read defect file: /mnt/falcon/SensorDefects.xml with 4 defects
 Correcting for 4 defects
 CLOSED FILE
 Gain 609580.732702 (27330.847552) defined using 13649329 points
 NEW MEAN (excluding defects) 1.000320 dmin 42.203042 dmax 0.818717 IC 16764929
 Gain file read and gain correction stored as gain_2014_02_27-11_48_40.mrc
 Trying to initialize memory for 160 frames
 Initializing enough memory for 160 frames
 ATTEMPTING to allocate 5121 huge pages for buffer of size 10741612544 bytes 10 GB
 FRAME SIZE 67108864
 SHMID1 0
 NOW MEMSET 10741612544
 AFTER MEMSET
 Allocate memory for gain and dark reference field
 MAX number of interfaces 2
 Alloca interface eth4
 Alloca interface eth5
 Global->threads_n 2
 THREAD id 1 ->vis_n 1
 THREAD id 0 ->vis_n 1
 >>>>>>>>>>>>>>>> SET FILTERS 0
 >>>>>>>>>>>>>>>> SET FILTERS 1
 Unknown event
 Unknown event
 Unknown event
 Unknown event
 11_49_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_50_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_51_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_52_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_53_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_54_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_55_41:Idle :329, 0:329, 73446:: 0 0 0: Range 10000 0
 11_56_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_57_41:Idle :329, 0:329, 73446:: 0 0 0: Range 10000 0
 11_58_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 11_59_41:Idle :330, 0:329, 73446:: 0 0 0: Range 10000 0
 12_00_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 12_01_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0
 12_02_41:Idle :330, 0:330, 73446:: 0 0 0: Range 10000 0

4.

If you take a single shot Falcon image, you should see MRC files in the directory!5.

Falcon Hacking file:///Users/xuchen/Dropbox (UMass Medical School)/old-emdoc...

12 of 12 10/23/18, 11:27 AM

